

Ressortforschungsprogramm
Deutscher Wetterdienst (DWD)
Bundesamt für Seeschifffahrt
und Hydrographie (BSH)
Bundesanstalt für
Gewässerkunde (BfG)
Bundesanstalt für

KLIWAS-Projekt 3.03:

Änderungen auf den

Sedimenthaushalt der

Wasserbau (BAW)

klimabedingter

Nordseeästuare"

www.kliwas.de

"Einfluss

Über die Wirkung des Oberwasserzuflusses auf den Sedimenthaushalt der Tideelbe

A. Winterscheid, N. Gehres

1. Hintergrund

KLIWAS-Projekt 3.03 untersucht den Einfluss klimabedingter Änderungen auf den Sedimenthaushalt und die Morphodynamik der deutschen Nordseeästuare mit den Zielen:

- Verbesserung des Prozessverständnisses der ästuarinen Sediment- und Morphodynamik
- Beschreibung des Einflusses klimarelevanter Wirkfaktoren auf Sedimenthaushalt und Morphodynamik
- Durchführung von Langzeitsimulationen zur Analyse der Einflüsse von Klimaszenarien auf den ästuarinen Sedimenthaushalt
- Entwicklung von Anpassungsstrategien an den Klimawandel für das Sedimentmanagement

2. Methodik

Der **Oberwasserabfluss** über das Wehr bei Geesthacht in die Tideelbe wird am letzten binnenseitigen Pegel bei Neu Darchau (Elbe-km 536,44) gemessen.

Durch Anwendung des Transportrichtungsindikators (TRI) auf kontinuierliche Messzeitreihen von Trübung und Strömungsgeschwindigkeit ist eine semi-quantitative Analyse des **Schwebstoffnettotransportes** möglich.

Zur Bestimmung des **sohlnahen Sedimenttransportes über Transportkörper** werden Peildaten mit der Software DT2D (Ten Brinke et al.,1999) ausgewertet. Die Software eignet sich zur Detektion von Transportkörperstrukturen und ihrer Migrationsgeschwindigkeiten.

3. Einfluss des Oberwasserzuflusses...

a) ...auf die Trübung an den Dauermessstationen

An den Dauermessstationen besteht ein Zusammenhang zwischen dem 90% Quantil der Trübung (gemittelt über Flutphase) und dem Oberwasserzufluss (Q) (Abb.1):

- Q < $450-650 \text{ m}^3/\text{s}$: Trübung nimmt zu
- Q > $450-650 \text{ m}^3/\text{s}$ u. Q < $950-1050 \text{ m}^3/\text{s}$: Trübung nimmt ab
- Q > 950-1050 m^3/s u. Q <1600-1900 m^3/s : konstante Trübung
- Q > 1600-1900 $\,$ m³/s: Trübung nimmt ab

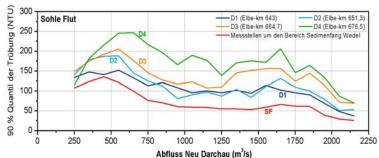


Abb. 1: Entwicklung der Trübung (dargestellt 90% Quantil) an den Dauermessstationen in Abhängigkeit des Oberzuflusses.

b) ...auf den Nettoschwebstofftransport

Die mittels TRI bestimmt Nettotransportrichtung von Schwebstoffen (Messzeitreihe 2005-2010) an der sohlnahen Messebene der vier Dauermessstationen ist in Abhängigkeit des Oberwasserzuflusses in Abb. 2 dargestellt.

c) ... auf die Dynamik von Transportkörpern

Für das Untersuchungsgebiet St. Margarethen (Elbe-km 685,5 bis 689,8) analysierte Migrationsgeschwindigkeiten von Transportkörpern und Literaturwerte aus zwei weiteren Gebieten sowie der Oberwasserzufluss (Pegel Neu Darchau) sind in Abb. 3 gegeneinander aufgetragen. Die Ergebnisse in allen Untersuchungsgebieten bestätigen, dass...

- ...Oberwasserzufluss einen Einfluss auf Migrationsgeschwindigkeit und -richtung der Transportkörper hat.
- ...ein zunehmender Oberwasserzufluss eine Zunahme der Migrationsgeschwindigkeiten in Richtung Nordsee bewirkt.
- ...es beim Unterschreiten eines Grenzabflusses zur Richtungsumkehr und Zunahme der Migrationsgeschwindigkeiten stromaufwärts in Richtung Hamburg kommt.
- ...der Grenzabfluss je nach Lage des Untersuchungsgebietes entlang des Ästuars variiert.

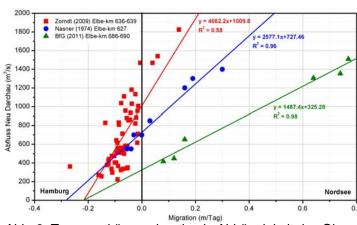


Abb. 3: Transportkörpermigration in Abhängigkeit des Oberwasserzuflusses bei Neu Darchau.

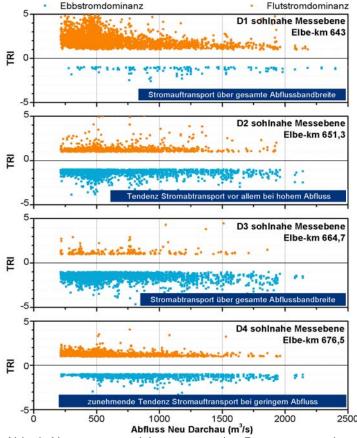


Abb. 2: Nettotransportrichtungen an den Dauermessstationen.

Autoren:

Axel Winterscheid

Tel.: ++49 (0) 261/1306-5190 Email: winterscheid@bafg.de

Nicole Gehres

Tel.: ++49 (0) 261/1306-5977 Email: gehres@bafg.de

Bundesanstalt für Gewässerkunde Referat M3: Grundwasser, Geologie Gewässermorphologie

Am Mainzer Tor 1 56068 Koblenz

www.bafg.de

Oktober 2011

4. Zusammenfassung

Unter Annahme derzeitiger Klimaszenarien wird ein zukünftig verändertes Abflussregime langfristig...

- a) ... die mittleren Trübungsverhältnisse entlang der Tideelbe und damit den Schwebstoffhaushalt beeinflussen.
- b) ... die Intensität des residuellen Schwebstofftransportes entlang der Tideelbe beeinflussen.
- $\textbf{c)} \ ... \ die \ \textbf{Migrationsrichtung} \ und \ \textbf{-geschwindigkeit} \ der \ \textbf{Transportk\"{o}rperstrukturen} \ in \ der \ \textbf{Tideelbe} \ beeinflussen.$

