

# Auswirkungen des Klimawandels auf Schadstoffbelastungen von Wasserstraßen

Thomas Ternes, Michael Schlüsener, Lars Düster, Agnessa Luft, Rita Beel, Kathrin Bröder, Annkatrin Schmukat

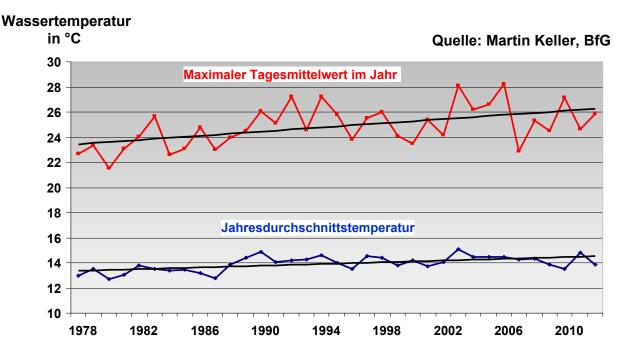
E-Mail: ternes@bafg.de



3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin



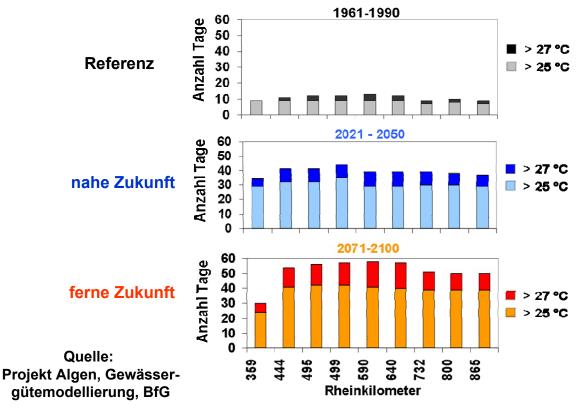
## Übergeordnete Fragen




- Führt der durch den Klimawandel verursachte Anstieg der Außentemperaturen zu einer veränderten Schadstoffbelastung der Fließgewässer?
- ➤ Haben zunehmende Wassertemperaturen einen Einfluss auf das Sorptionsverhalten und die Freisetzung von Schadstoffen?
- Beeinflussen zunehmende Wassertemperaturen den biologischen Abbau von organischen Spurenstoffen?

#### **Wassertemperatur des Rheins**

bei Koblenz von 1978-2012






3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

## Aufeinanderfolgende Tage mit Überschreitungen von 25 °C und 27 °C





#### Biozide - Anwendungsbereiche



**Biozide**: Wirkstoffe/Zubereitungen, die Schadorganismen/Mikroorganismen abschrecken, inaktivieren oder zerstören → **biologisch aktive Substanzen** 

#### Vier Hauptgruppen an Biozide



**Desinfektionsmittel** und allgemeine Biozidprodukte

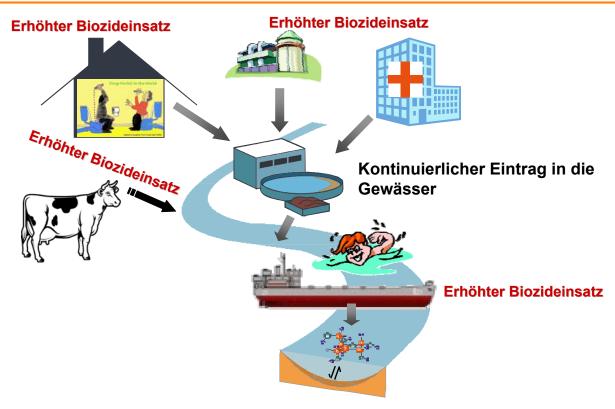


Schädlingsbekämpfungsmittel



Konservierungsmittel

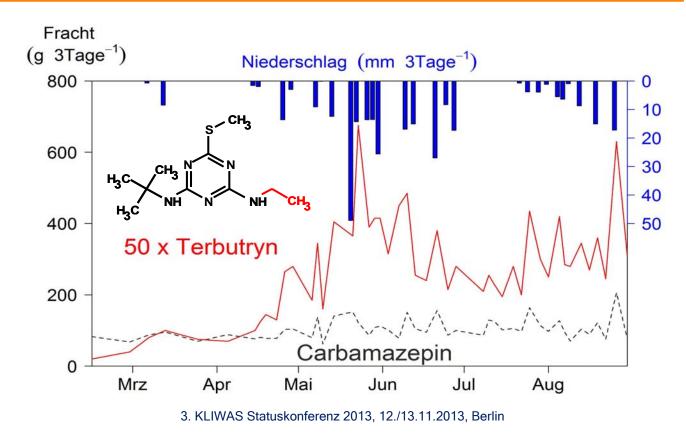



Bewuchshemmende Anstriche (z.B. Antifouling)

→ Gesamtkonsum in Deutschland: ~ 58 000 – 82 000 t (geschätzt nach Larsen et al. 2001)

3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

#### **Biozide und Klimawandel**






#### Zulauffracht des Biozids Terbutryn

Kläranlage Koblenz 2013





#### Verteilungskoeffizient: Sediment/Wasser



TOC Binnensediment: 4,3% TOC Küstensediment: 0,34%

Verteilungskoeffizient K<sub>d</sub>

normierter Verteilungskoeffizient K<sub>oc</sub>

$$K_d = \frac{C_s}{C_w} (L/kg)$$

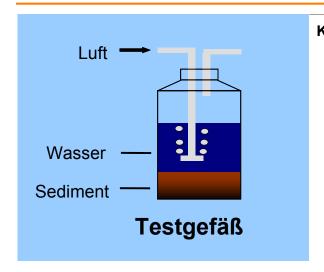
$$K_{oc} = \frac{K_d}{f_{oc}} (L/kg)$$

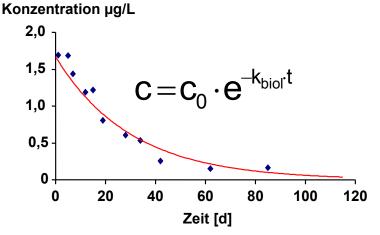
f<sub>oc</sub> = Anteil organischer Kohlenstoff

44 Biozide/Pestizide,

33 Pharmaka,

10 Flammschutzmittel


|   | Substanz   |     | log K <sub>d</sub><br>Binnen |      | log K <sub>d</sub> Küste |  |
|---|------------|-----|------------------------------|------|--------------------------|--|
|   |            | 4°C | 20°C                         | 36°C | 20 °C                    |  |
| d | Irgarol    | 1,6 | 1,5                          | 1,6  | 0,7                      |  |
|   | Irgarol M1 | 1,2 | 1,1                          | 1,1  | 0,3                      |  |


Sorption ist vor allem abhängig vom organischen Kohlenstoffgehalt (TOC) und "kaum" von Temperatur und Salzgehalt

| Triclosan    | 2,9 | 2,9 | 2,9 | 1,5 |
|--------------|-----|-----|-----|-----|
| Triclocarban | 3,5 | 3,1 | 3,3 | 2,5 |

#### Bioabbauexperimente nach OECD 308

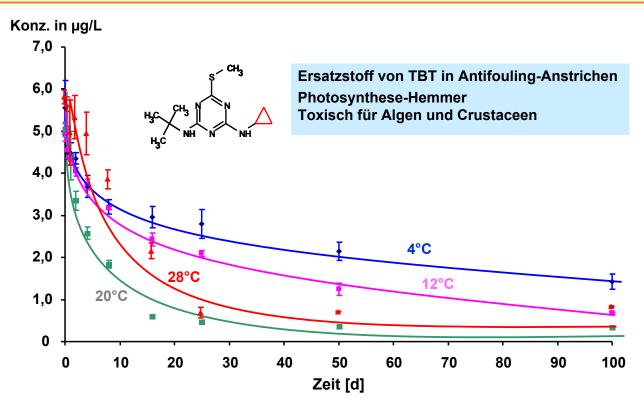






Dauer: 100 Tage (d)

Probenahme: 0, 1/2, 1, 2, 4, 8, 16, 25, 50, 100 d


Wiederholungen: 3

Temperaturen: 4°C, 12°C, 20°C, 28°C

3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

## Einfluss der Temperatur auf den biologischen Abbau Biozid Irgarol

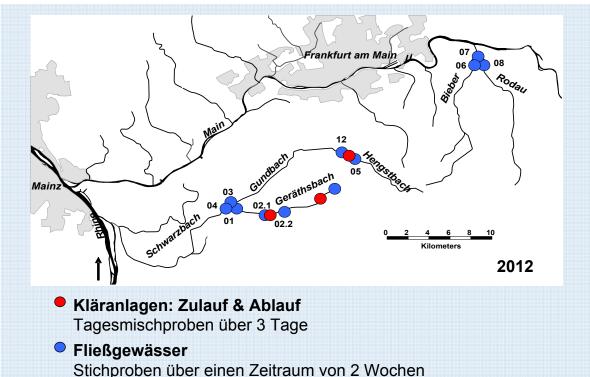




#### Abbau ist häufig unvollständig

#### Beispiel: Biozide Irgarol & Terbutryn

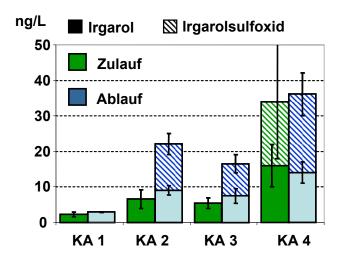


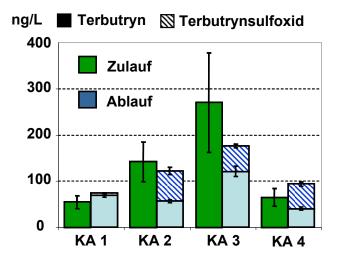

#### Photoabbau & biologischer Abbau

- [1] Penuela et al. (2000), Int. J. Environ. Anal. Chem., 78, 25-40.
- [2] Sakkas et al. (2002), J. Photochem. Photobiol. A-Chem., 147, 135-141.
- [3] Liu et al. (1997), Wat. Res., 31, 2363-2369.
- [4] Miur et al. (1982), J. Environ. Sci. Health, B17, 363-380

3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

## Beprobung ausgewählter Zufüsse von Main und Rhein



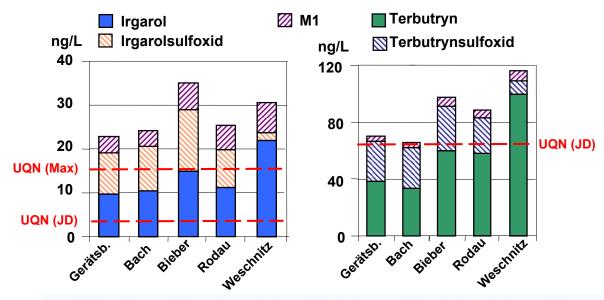

#### **Bildung von Transformationsprodukten (TPs)**

in kommunalen Kläranlagen, Juni 2012








- In KA werden Terbutrynsulfoxid und Irgarolsulfoxid gebildet
- Irgarolsulfoxid war teilweise auch im KA Zulauf nachweisbar

3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

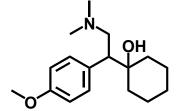
#### Nachweis von Irgarol, Terbutryn und der TPs

Zuflüsse von Rhein und Main, Juni 2012





- > Sulfoxide sind in Fließgewässern nachweisbar, und zwar um so höher je höher der Anteil an gereinigtem Abwasser ist.
- ➤ Die Summe der Konzentrationen von Ausgangssubstanz und TPs überschreiten die vorgeschlagenen UQN von 2,5 ng/L (Irgarol) und 65 ng/L (Terbutryn)


#### Veränderung der Schadstoffkonzentrationen

**Beispiel: Antidepressivum Venlafaxin** 

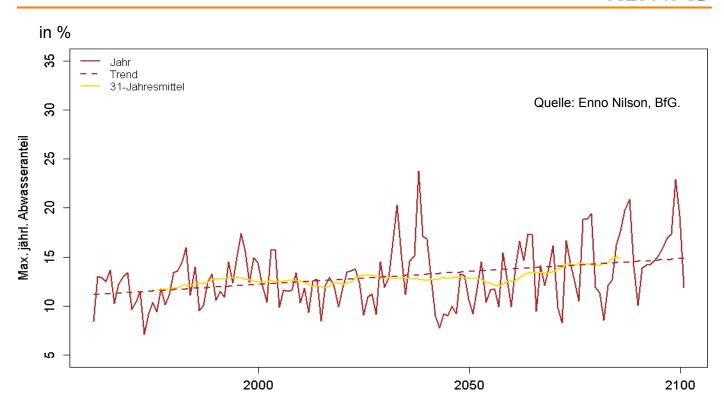


| 2009                                              | Deutschland | Kanada |
|---------------------------------------------------|-------------|--------|
| Verbrauch [mg cap <sup>-1</sup> a <sup>-1</sup> ] | 170         | 680    |
| Verbrauch [t a <sup>-1</sup> ]                    | 7.5         | 22.2   |





| Steigender | Verbrauc | h in Deutschland |
|------------|----------|------------------|
|            | Jahr     | [t/a]            |
|            | 2009     | 7.5              |
|            | 2011     | 12.4             |
|            | 2012     | 14.7             |

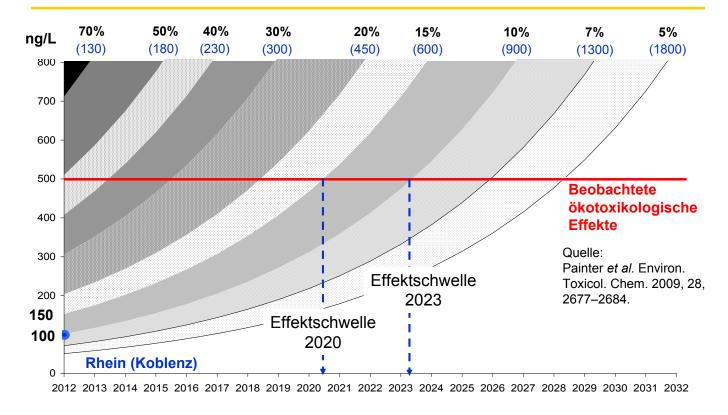

Mind. 15%iger Anstieg der Verschreibungen für die nächsten Jahre prognostiziert

(Gründe: Demographische Entwicklung, veränderter Lebensstil)

Klimawandel: steigende Anzahl an Trockenperioden

3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

## Maximal jährlicher Abwasseranteil des Rheins (Koblenz) 1950-2100 Projektionen mit abnehmendem Niedrigwasserabfluss KLIWAS



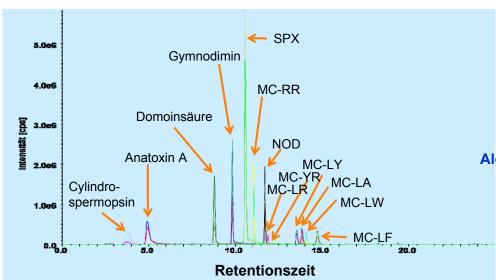

## Modellierte Konzentration an Venlafaxin in Abhängigkeit vom

Abwasseranteil in %

(Abfluss des Rheins bei Koblenz in m³/s)






## Entwicklung einer sensitiven Methode

zur Messung von Algentoxinen



Algentoxine sind potentiell toxisch für das Ökosystem
Simultane Bestimmung von 13 Toxinen innerhalb einer Stunde
"Large-volume"-Injektion (900 μL), Bestimmungsgrenzen bis 1 ng/L





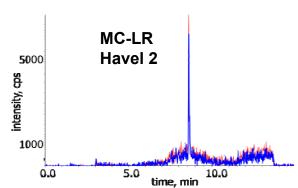
Algenblüte, Ostsee, Juli 2005



### **Havel-Probenahme (August 2012)**



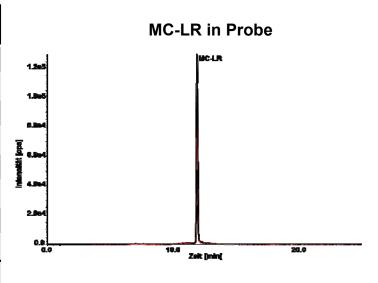



3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

### Algentoxine in der Havel (Berlin, August 2012)



#### Sonnig, keine Algenblüte, Frühwarnung möglich


| [ng/L] | Havel 1 | Havel 2 | Havel 3 | Havel 4 | Havel 5 |
|--------|---------|---------|---------|---------|---------|
| CYN    | 6,7     | 4,8     | 6,7     | 7,1     | 15      |
| MC-LR  | 51      | 54      | 29      | 22      | 16      |
| MC-RR  | 25      | 21      | 12      | 9,5     | 2,0     |
| MC-YR  | 42      | 33      | < BG    | < BG    | < BG    |
| NOD    | 25      | 11      | 4,2     | < BG    | < BG    |
| Summe  | 150     | 120     | 52      | 39      | 32      |



### Algentoxine in Eluaten von Elbe-Hafensedimenten (Okt. 2012)



| [µg/L<br>Eluat] | 1                                                           | 2     | 3     | 4     |
|-----------------|-------------------------------------------------------------|-------|-------|-------|
| CYN             | < BG                                                        | < BG  | < BG  | 0,019 |
| MC-LA           | < BG                                                        | < BG  | < BG  | 0,040 |
| MC-LF           | < BG                                                        | < BG  | 9     | 0,037 |
| MC-LR           | 0,14                                                        | 0,83  | 4,9   | 36    |
| MC-LW           | < BG                                                        | < BG  | 0,017 | 0,092 |
| MC-LY           | <bg< td=""><td>0,004</td><td>0,016</td><td>0,083</td></bg<> | 0,004 | 0,016 | 0,083 |
| MC-RR           | 0,068                                                       | 0,46  | 5,3   | 50    |
| MC-YR           | 0,067                                                       | 0,47  | 2,7   | 23    |
| Summe           | 0,28                                                        | 1,8   | 22    | 109   |



3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

### Schlussfolgerungen: Klimawandel und Schadstoffe



- ➤ Kein Einfluss der Wassertemperatur (4-36°C) auf Sorptionsverhalten von 87 Schadstoffen.
- ➤ Die Abbaugeschwindigkeit in Wasser/Sediment-Systemen nimmt von 4°C bis 20°C zu. Bei 28°C war für viele Schadstoffe ein Rückgang zu beobachten.
- Das « Verschwinden » einer Substanz ist für eine Bewertung nicht ausreichend, da sich häufig stabile TPs mit vergleichbarer/unbekannter Toxizität bilden.
- > Algentoxine: empfindliche Nachweismethode, um frühzeitig deren Auftreten zu erkennen.
- ➤ Die Schadstoffbelastungen der Binnengewässer erhöhen sich geringfügig bei steigendem Abwasseranteil.
- > Der erhöhte Einsatz von Stoffen wie Bioziden und UV-Stabilisatoren wird vermutlich zu einer stärkeren Erhöhung der Gewässerbelastungen führen.

#### **Anpassungsoptionen**



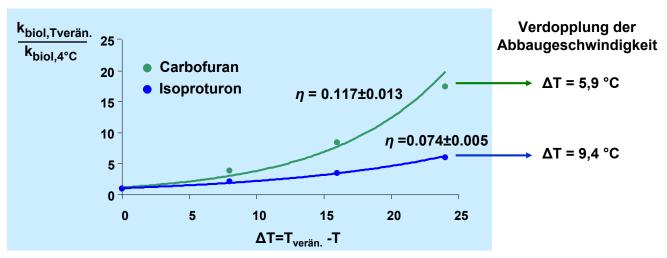
- ➤ Die Einführung der sog. 4. Reinigungsstufe (z. B. Aktivkohlefiltration) bei KA führt zu einer deutlichen Reduzierung der abwasserbürtigen Schadstoffe in den Fließgewässern.
- > Bei der Zulassung von Produkten ist die Freisetzung von Stoffen und die Bildung von Transformationsprodukten bei erhöhten Temperaturen zu berücksichtigen.
- ➤ Ein Verbot bzw. eine Anwendungsbeschränkung von extrem toxischen Spurenstoffen ist nur in gut begründeten Ausnahmefällen umsetzbar.





3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

#### Einfluss der Temperatur auf den biologischen Abbau




$$k_{biol,T_{verändert}} = k_{biol,T} \cdot e^{\eta \cdot (T_{verän.} - T)}$$

<sup>k</sup>biol,T: Geschwindigkeitskonstante bei der Temperatur T [d<sup>-1</sup>]

T: Ausgangstemperatur [°C]

 $\eta$ : Temperaturkoeffizient [-],  $\eta$  = 0,01-0,15



3. KLIWAS Statuskonferenz 2013, 12./13.11.2013, Berlin

## Einfluss der Temperatur auf das Abbauverhalten Wasser/Sediment-System (OECD 308)



|                    | DT50 in Tagen |           |         |      |                  |         |
|--------------------|---------------|-----------|---------|------|------------------|---------|
| T [°C]             | Irgarol       | Terbutryn | Simazin | DEET | Isoprot-<br>uron | Monuron |
| 4                  | 27            | 15        | 60      | 53   | 74               | 40      |
| 12                 | 21            | 18        | 32      | 34   | 35               | 26      |
| 20                 | 5,2           | 7,9       | 13      | 7,0  | 21               | 13      |
| 28                 | 11            | 9,2       | 38      | 6,0  | 12               | 24      |
| Salzwasser<br>20°C | 4,7           | 5,9       | 18      | 23   |                  | 18      |

DT50: 50% der Ausgangsverbindung sind nicht mehr nachweisbar

## Untersuchte Substanzen bei den biologischen Abbauexperimenten



Pharmaka (3)

Antiepileptika: Primidon, Carbamazepin

Analgetika: Tramadol

Biozide/Pestizide (23)

Herbizide: Propazin, Atrazin, Simazin, Terbutylazine, Irgarol, Terbutryn,

Monuron, Diuron, Chloroxuron, Isoproturon

Repellent: DEET

Antibakterieller Wirkstoff: Triclosan, Triclocarban

Fungizide: Thiabendazole, Tebuconazole, Propiconazole, Climbazole,

Tridemorph, Fenpropimorph, Imazalil

Insektizide: Carbofuran, Indoxacarb, Allethrin